Testing whether conservation action works:

Does the creation of stepping-stone ponds increase dispersal?

Sam Cruickshank

Conservation Biology of Amphibians Research Group

Amphibian Declines

- Most threatened vertebrate group
 - >32% species threatened
 - 25% species data deficient (also threatened?)
- Many different threats
 - Switzerland: habitat loss/fragmentation

Amphibian Conservation

- 1. ~1990 global declines noticed
 - Focus on documenting declines
- 2. Describing/understanding threats
 - Habitat loss and fragmentation
 - Infectious diseases
 - Overharvesting
 - Pollution
 - Invasive species

Next:

- 3. Use understanding to improve conservation success
- Evidence-based conservation

Evidence-based Conservation

- Often a disconnect between scientists and practitioners
 - Scientists like to generalise
 - Practitioners want specifics
 - Research is inaccessible

Solutions:

- More relevant research
 - Evaluating success of conservation projects
 - Establishing why interventions succeed/fail
- More accessible research
 - E.g. systematic reviews of conservation success
 - Direct contact with practitioners

Benefits of evidence-based conservation....

- Improve recommendations for future work
- Improved cost-effectiveness of conservation
- Demonstrating success vital for funding and stakeholder support
 - Vital for projects relying on landowner support

Project Aim:

To evaluate the success of habitat connectivity project:

- Are stepping stones used?
- Does this increase dispersal?
 - Quasi-experimental metapopulation

Yellow-Bellied Toad

(Bombina variegata)

- 60% decline in 10 years within Switzerland
- Considered a good coloniser
- Study area is one of the largest remaining populations
- Conservation project initiated in 2011

The conservation project

- Several large populations in region
 - Strong isolation between populations
- Autumn 2011: 10 new pond groups dug
 - Specifically to reconnect large population

Study Sites

• Comprehensive survey in Spring 2011

- Mark-recapture started in 2011
 - Prior to pond construction
 - Counts of adult population
 - Individual capture histories

Methods

• Ventral patterns allow photo-ID

So far:

- 13 surveys
- 19 sites
- 2665 adults captured over 4 years
 - 863 individuals captured >1 survey

CJS recapture model

- Migration rates
- Survival probabilities
- Recapture probabilities

	Мау	June	July
2011		▲1	▲2 ▲3
2012			▲4 ▲5
2013	▲6	▲8	▲8 ▲9
2014	▲10 ▲11		▲12 ▲13
2015	▲14 ▲15		▲16 ▲17
2016	▲18 ▲19		▲20 ▲21

Results- Dispersal

Only 4 recorded dispersal events

- 2 way exchange between 2 sites
- $\bullet \ \mathsf{Old} \leftrightarrow \mathsf{New}$
- 270m distance

Study area range 100-4800m

However...

Results- Colonisation

- 5 of 10 new ponds colonised
 - All in the year following pond creation
 - Only 2/4 maintained any individuals beyond the first year (one pond only 1 year old)
- 77 colonisers were new to the study

- Overall "colonisation" pattern:
- Year 1: transient pioneers
- Year 2: some transients, but new individuals resident for the year
- Year 3: less immigration, higher site fidelity (sometimes!)

Results-Survival

• High monthly survival (>95%)

Conclusion so far:

- Toads don't move much!
 - Few dispersal events seen

Apparent survival = true survival * (1-emigration)

• High apparent survival suggests emigration rare

BUT, ponds were colonised- so we're missing something......

- Possibly juveniles are colonising?
- Different approach needed

Genetic analyses (future work)

- 2012: 184 individuals sampled
 - Just after new ponds built
- Microsatellite analysis:
 - characterise genetic structure of the population
 - Identify population barriers
- 2014: Some colonisers sampled
- 2015: All captures at new sites sampled
 - Assignment tests to identify source populations

Effects of conservation work on infection spread

Batrachochytrium dendrobatidis (BD/chytrid)

- Pathogenic fungus of amphibians
- Implicated in declines and extinctions globally

- 2011: 100 swabs (6 ponds) no BD detected
- 2014: 150 swabs
- 2015: rigorous screening
 - Is BD spreading?
 - Does this relate to movements of Bombina?

Conclusions

- Evaluating success of conservation is important
 - We shouldn't just assume things work. Scale for amphibians is often a big issue
- Toads do move, but generally they stay put.

 Movements only occur over short distances, and it's often difficult to detect them

Conclusions

Important to consider potential unintended consequences of conservation
 ->e.g. spreading infection.

• Paying landowners for doing conservation doesn't work without enforcement

• Bigger is not necessarily better- small "ponds" can work well

Acknowledgements

- Hannelore Brandt
- Daniel Hasen
- Martin Jordan
- Thomas Hertach
- Tierpark Goldau

- Arpat Ozgul
- Benedikt Schmidt

• volunteers

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Office for the Environment FOEN Bundesamt für Umwelt BAFU

